Effects of Pretreatment Technologies on Maize Straw for Biogas Production

Andreas Gronauer
Javier Lizasoain
Challenge for a technical implementation and management

- Crop cultivation
- Harvest
 - Main products: food, feed
 - Crop residues retrieval & size reduction
- Preservation & storage
- Preparation & pretreatment
- Fiber & fuel production

Sustainable soil management (humus)
- fertilizer
- crops
Challenge for a technical implementation and management

Harvesting technologies

- Adaptation of existing harvesting systems
- Short chopping lengths (compaction at the silo) or dried straw bales
- Avoidance of substrate contamination

Crop cultivation

Harvest

Main products

Crop residues retrieval & size reduction

Preservation & storage

Preparation & pretreatment

Fiber & fuel production

Sustainable soil management (humus)

Crop residues retrieval & size reduction

food, feed

fertilizer

crop residues retrieval & size reduction

food, feed

fertilizer

Sustainable soil management (humus)
Challenge for a technical implementation and management

Preservation and storage

Crop cultivation
Harvest

Main products
Crop residues retrieval & size reduction

food, feed
Preservation & storage

fertilizer
Preparation & pretreatment
Fiber & fuel production

Sustainable soil management (humus)
Challenge for a technical implementation and management

Preservation and storage

Maize straw ≠ Maize straw

- Highly dependent on biomass type, maturity, harvest time, etc.
- Ensiling or
- Storage as dry material
Ensiling:
- 28-45% DM → Early harvesting time → Post-drying corn grains
- Improvement of ensiling ability by combination with catch crops and green wastes
Ensiling:
- 28-45% DM → Early harvesting time → Post-drying corn grains
- Improvement of ensiling ability by combination with catch crops and green wastes

Dry storage:
- Low water content → later harvesting time
- Big storage volumes
- Strong lignification → need of pretreatment for biogas production
Challenge for a technical implementation and management

Pretreatment of biomass

Crop cultivation

Harvest

Main products

Crop residues retrieval & size reduction

Preservation & storage

Preparation & pretreatment

Fiber & fuel production

Sustainable soil management (humus)

food, feed

fertilizer

Institute of Agricultural Engineering - A. Gronauer
Strong lignification prevents degradation of biomass

Additional process step (pretreatment) is necessary in the process chain
Challenge for a technical implementation and management

Pretreatment: background I

- Strong lignification prevents degradation of biomass
- Additional process step (pretreatment) is necessary in the process chain
Challenge for a technical implementation and management

Pretreatment: background II

Possible problems
- Reduction of usable reaction space
- High energy requirement
- Operational disturbances

Improvements
- Viscosity / pumping hability
- Stirability and homogeneisability
- Degradability

Source: Björn Schwarz, Fraunhofer IKTS, Dresden 2012
Pretreatment of biomass

- Pretreatments
 - Biological
 - Enzymatic
 - Fungal
 - Physical
 - Mechanical
 - Thermal
 - Ultrasound
 - Electrokinetic
 - Chemical
 - Acid
 - Alkali
 - Oxidative
 - Combined
 - Steam explosion
 - Extrusion
 - Termochemical
Pretreatment of biomass

Pretreatments

Biological
 - Enzymatic
 - Fungal

Physical
 - Mechanical
 - Thermal
 - Ultrasound
 - Electrokinetic

Combined
 - Steam explosion
 - Extrusion
 - Termochemical
Pretreatment of biomass

Pretreatments

Biological
- Enzymatic
- Fungal

Physical
- Mechanical
- Thermal
 - Ultrasound
 - Electrokinetic

Chemical
- Acid
- Alkali
- Oxidative

Institute of Agricultural Engineering - A. Gronauer
Pretreatment of biomass

Pretreatments

- **Biological**
 - Enzymatic
 - Fungal

- **Physical**
 - Mechanical
 - Thermal
 - Ultrasound
 - Electrokinetic

- **Chemical**
 - Acid
 - Alkali
 - Oxidative

- **Combined**
 - Steam explosion
 - Extrusion
 - Thermochemical
Pretreatment technologies:

Mechanical pretreatment

Mainly related to surface reduction

- Grinding (pressure, impact)
- Cutting (shear)
- Extrusion (pressure, friction, defibration)
Pretreatment technologies:

Mechanical pretreatment

Methane production ($L_N / Kg VS$)

untretreated
Pretreatment technologies:

Mechanical pretreatment

![Graph showing methane production over days for mechanical and untreated samples](image)

- **Methane production** ($L_N/ Kg VS$)
- **days**
- **Lines:**
 - **Orange line:** mechanical
 - **Green line:** untretreated
Pretreatment technologies:

Mechanical pretreatment

- **Mechanical pretreatment**
- **Untretreated**

![Graph showing methane production over days with mechanical pretreatment increasing by +20%](image)

Institute of Agricultural Engineering - A. Gronauer
Mechanical pretreatment

Differences in gas yields (40 days)

- Untretreated
- Mechanical 1 (cutting)
- Mechanical 2 (grinding)
- Mechanical 3 (extrusion)

Methane production ($L_N / Kg VS$)
Mechanical pretreatment:

Energy requirement

- Extruder
- Grinding mills
- Dissolver
- Cutting mills
- Perforated discs

Energy required (kWh/t silage)

Quelle: Björn Schwarz, Fraunhofer IKTS, Dresden 2012
Mechanical pretreatment:

Advantages and disadvantages

Advantages

• Easy integration in biogas plant
• Reduction of floating layers
• Improving mixing properties (stirring ability)
• Faster degradation
• Increased gas yield
Mechanical pretreatment:

Advantages and disadvantages

Advantages

• Easy integration in biogas plant
• Reduction of floating layers
• Improving mixing properties (stirring ability)
• Faster degradation
• Increased gas yield

Disadvantages

• High electrical demand
• Milling tools are usually sensitive to contaminants (stones, metal parts, etc.)
• Corrosion or abrasion by organic acids and minerals (sand)
Pretreatment technology:

Combined - Steam explosion

- Treatment of biomass for a defined time with hot water under high pressure
- Pressure suddenly drops \rightarrow Water evaporates suddenly
- Thermochemical and mechanical digestion of the biomass (Steam Explosion)
Pretreatment technology:

Combined - Steam explosion
Pretreatment technology:
Combined - Steam explosion
Combined pretreatment – Steam explosion

Differences in gas yields (45 days)

Methane production ($L_N / Kg VS$)

days

untretreated
Combined pretreatment—Steam explosion

Differences in gas yields (45 days)

Methane production (L\textsubscript{N} / Kg VS)

- Steam explosion
- Untretreated

+ 20%
Combined pretreatment—Steam explosion

Differences in gas yields (45 days)

- steam explosion
- mechanical
- untretreated

Methane production ($L_N / Kg VS$)

+ 20%
Combined pretreatment – Steam explosion

Power requirements

<table>
<thead>
<tr>
<th>Electricity demand</th>
<th>< 25 kW</th>
<th>2.5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>580 kWh/d</td>
<td></td>
<td>35 kWh/t VS</td>
</tr>
</tbody>
</table>
Combined pretreatment – Steam explosion

Power requirements

<table>
<thead>
<tr>
<th></th>
<th>Electricity demand</th>
<th>Heat demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand</td>
<td>< 25 kW</td>
<td>250 – 300 kW</td>
</tr>
<tr>
<td>Energy</td>
<td>2,5 %</td>
<td>25 - 30 %</td>
</tr>
<tr>
<td>Input</td>
<td>580 kWh/d</td>
<td>6600 kWh/d</td>
</tr>
<tr>
<td>Output</td>
<td>35 kWh/t VS</td>
<td>392 kWh/t VS</td>
</tr>
</tbody>
</table>
Combined pretreatment – Steam explosion

Power requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Demand</th>
<th>Percentage</th>
<th>Reference Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity</td>
<td>< 25 kW</td>
<td>2.5%</td>
<td>1 MW electrical capacity (Economizer SE, BiogasSystems)</td>
</tr>
<tr>
<td></td>
<td>580 kWh/d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat</td>
<td>250 – 300 kW</td>
<td>25 - 30%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6600 kWh/d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>30% DM input</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13,500 to 15,000 m³/year</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Advantages and disadvantages

More biogas and faster degradation due to higher surface area and a change in the chemical composition

Advantages

- Possibility to use waste heat from CHP
- Potential to speed up digestion
- Suitable for hygienisation (sludge, slaughterhouse residues, ...)

Thermal pretreatment– Steam explosion
Thermal pretreatment—Steam explosion

Advantages and disadvantages

More biogas and faster degradation due to higher surface area and a change in the chemical composition

Advantages

• Possibility to use waste heat from CHP
• Potential to speed up digestion
• Suitable for hygienisation (sludge, slaughterhouse residues, ...)

Disadvantages

• Partially complex integration into the biogas plant
• Suitable for large biogas plants (> 1 MW)
• Waste heat must be sufficient for the process (no additional heating)
Key points

Consistent and effective pre-treatment is imperative to avoid operational problems in biogas plants
Key points

→ Consistent and effective pre-treatment is imperative to avoid operational problems in biogas plants

→ Selection of pretreatment
 • Economical
 • Effective degradation of the feedstock
 • Adapted to the installed technology (feeding systems, pumps, agitators)
Key points

→ Consistent and effective pre-treatment is imperative to avoid operational problems in biogas plants

→ Selection of pretreatment
 • Economical
 • Effective degradation of the feedstock
 • Adapted to the installed technology (feeding systems, pumps, agitators)

→ The adaptation and optimization of the pretreatment technologies require the performance of individual studies for every specific biogas plant
Andreas Gronauer, Javier Lizasoain
Institute of Agricultural Engineering
University of Natural Resources and Life Sciences

andreas.gronauer@boku.ac.at

Projekt-Team:
Andreas Gronauer, Javier Lizasoain, Oksana Pavliska, Franz Theuretzbacher, Susanne Frühauf, Alexander Bauer